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Why study (tame) quaternionic extensions?

Quaternionic extensions of number fields have been important
in the history of Galois module structure.

There exist tamely ramified quaternionic extensions L/Q
which have local, but not global, normal integral bases.

We might look to these for examples of cases where a
non-classical Hopf-Galois structure provides a better
description of the algebraic integers.

Tameness is not used in the work displayed here, but will be
useful for eventual deductions on freeness.
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Our extension

Let L/Q be a Galois extension with Galois group, G , equal to
the quaternion group of order 8.

Then there exists a unique biquadratic subextension, K/Q,
that is Galois with group Ḡ ∼= C2 × C2.

Let G = 〈σ, τ |σ4 = 1, σ2 = τ2, στ = τσ−1〉.

Let K = Q(α, β) where σ̄(α) = −τ̄(α) = α and
σ̄(β) = −τ̄(β) = −β
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Greither & Pareigis

Greither & Pareigis

Theorem (Greither & Pareigis, 1987)

There is a bijection between regular subgroups N of Perm(G )
normalised by λ(G ) and Hopf-Galois structures on L/Q defined by
N ↔ L[N]G .

G acts on N via conjugation by λ(G ).

A subgroup N of Perm(G ) is said to be regular if |N| = |G |
and stabN(g) is trivial for all g ∈ G .

Perm(G ) is large so getting at possible N is difficult.
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Byott’s translation

Byott’s translation theorem

Theorem (Byott, 1996)

Let N be a group of order |G |. There is a bijection between

N = {α : N → Perm(G ) a 1-1 homomorphism s.t. α(N) is regular}

and

G = {β : G → Perm(N) a 1-1 homomorphism s.t. β(G ) is regular}.

Under this bijection if α, α′ ∈ N correspond to β, β′ ∈ G
respectively, then:

α(N) = α′(N) iff β(G ) is conjugate to β′(G ) by an element
of Aut(N),

α(N) is normalised by λ(G ) ⊂ Perm(G ) iff
β(G ) ⊆ Hol(N) ∼= N o Aut(N).
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Byott’s translation

Elementary abelian example

We can view C 3
2 as F3

2 so that Aut(N) ∼= GL3(F2).

We find, using Sylow subgroup theory, 14 regular subgroups of
Hol(N) isomorphic to G ∼= Q8, represented by M.

We then have |Aut(Q8)|/|Aut(N)| · 14 = 14/7 = 2 regular
subgroups of Perm(G ).

This comes from two collections, each of 7 of the subgroups,
that are conjugate to each other.

We construct α = C ((β(G ) · 1N)−1) · λN where β : G → M
once for each collection representative.

Write down the Nk = αMk
(N) and apply Greither-Pareigis for

the Hopf-Galois structures L[Nk ]G .

7/15



Outline Introduction Finding the structures Algebra description Summary

Summary

Final count

Abelian types

C2 × C2 × C2 type

14 M ⊂ Hol(N),

2 Nk ⊂ Perm(G ).

C8 type

1 M ⊂ Hol(N),

6 Nk ⊂ Perm(G ).

C4 × C2 type

2 M ⊂ Hol(N),

6 Nk ⊂ Perm(G ).

Non-abelian types

Q8 type

2 M ⊂ Hol(N),

2 Nk ⊂ Perm(G ) (classical
and standard non-classical)

D4 type

2 M ⊂ Hol(N),

6 Nk ⊂ Perm(G ) (3 from
each).
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Abelian types

Boltje & Bley

Theorem (Boltje & Bley, 1999)

For N abelian

let χ1, ..., χs ∈ N̂ be a set of representatives of the G -orbits
for N̂.

Let L̂k denote the fixed field of Sk = stab(χk).

Then

L[N]G ∼=
∏s

k=1 L̂k ,

the maximal order of L[N]G is M∼=
∏s

k=1OL̂k
.
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Abelian types

Elementary abelian example

Find G -orbits of N̂, choose representatives, and write down
stabilisers in each case.

In both of these cases the orbit structure is the same, as are
the stabilisers: 4 trivial orbits with stabiliser G and one of size
4 with stabiliser 〈σ2〉.

So we find
L[Ni ]

G ∼= Q4 × K .
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Non-abelian types

Quaternionic example

Class {1} {σ2} {σ, σ3} {τ, σ2τ} {στ, σ3τ}
χ0 1 1 1 1 1

χ1 1 1 1 -1 -1

χ2 1 1 -1 1 -1

χ3 1 1 -1 -1 1

χ4 2 -2 0 0 0

We have that;

the four 1-dimensional characters are realisable over R so have
values in Q;

no orbits mix elements of different conjugacy classes.

Thus the G action on the idempotents of the four 1-dimensional
characters is trivial and they are, of course, orthogonal to the other
idempotents. So we get a copy of Q for each of these.

11/15



Outline Introduction Finding the structures Algebra description Summary

Non-abelian types

Quaternionic example continued

χ4 is realisable over Q(i) so let F = L(i) so that
F [N] ∼= F 4 ×Mat2×2(F ).
Let Γ be the Galois group of F/L. Then F [N]Γ = L[N].

Notice the 4 F slices will fix to the Q slices from before.
For the dimension 4 slice

let e = 1
4 (1− σ2), the idempotent corresponding to χ4.

Then {e, eσ, eτ, eστ} is a Q-basis for the dimension 4 slice.
The multiplication table for these is that of the quaternions H.

The action of G is trivial for N = ρ(G ). For N = λ(G ) the action
gives us that an element of the dimension 4 slice is fixed by G if
and only if it has the form

a0e + a1αeσ + a2βeτ + a3αβeστ.

Thus

L[ρ(G )]G ∼= Q4 ×H & L[λ(G )]G ∼= Q4 ×Q(αi , βj).
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Summary

Descriptions

For µ ∈ {α, β, αβ} determined by the stabiliser in each case we
have

C2 × C2 × C2 type

L[N]G ∼= Q4 × K

C4 × C2 type

L[N]G ∼= Q4 ×Q(µi)2

C8 type

L[N]G ∼=
Q2×Q(µi)×Q(

√
2, µi)

Q8 type

L[ρ(G )]G ∼= Q4 ×H
L[λ(G )]G ∼= Q4 ×Q(αi , βj)

D4 type

L[N]G ∼= Q4 ×Q(αi , βj) in three cases
L[N]G ∼= Q4 ×Q(i , µj) in the other cases

13/15



Outline Introduction Finding the structures Algebra description Summary

Observations

All of the cases in each type come from the same subgroup of
the respective automorph.

The D4 type has two different algebra descriptions
corresponding to how they arose from the holomorph.

Three of the Hopf-Galois structures of type D4 are isomorphic
as algebras to the structure L[λ(G )]G .

The classical Hopf-Galois structure and the standard
non-classical structure are not isomorphic as algebras.
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Thank you

Thank you for listening!
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