Outline	Introduction	Finding the structures	Algebra description	Summary

Hopf-Galois Structures on Quaternionic Extensions

Stuart Taylor

May 23, 2017

Outline	Introduction	Finding the structures	Algebra description	Summary

- 2 Finding the structures• Greither & Pareigis
 - Byott's translation
 - Summary

3 Algebra description

- Abelian types
- Non-abelian types
- Summary

4 Summary

Outline	Introduction	Finding the structures	Algebra description	Summary

Why study (tame) quaternionic extensions?

- Quaternionic extensions of number fields have been important in the history of Galois module structure.
- There exist tamely ramified quaternionic extensions L/\mathbb{Q} which have local, but not global, normal integral bases.
- We might look to these for examples of cases where a non-classical Hopf-Galois structure provides a better description of the algebraic integers.
- Tameness is not used in the work displayed here, but will be useful for eventual deductions on freeness.

Outline	Introduction	Finding the structures	Algebra description	Summary
Our ex	tension			

- Let L/\mathbb{Q} be a Galois extension with Galois group, *G*, equal to the quaternion group of order 8.
- Then there exists a unique biquadratic subextension, K/Q, that is Galois with group G
 [−] ⊂ C₂ × C₂.

• Let
$$G = \langle \sigma, \tau | \sigma^4 = 1, \sigma^2 = \tau^2, \sigma \tau = \tau \sigma^{-1} \rangle.$$

• Let
$$K = \mathbb{Q}(\alpha, \beta)$$
 where $\bar{\sigma}(\alpha) = -\bar{\tau}(\alpha) = \alpha$ and $\bar{\sigma}(\beta) = -\bar{\tau}(\beta) = -\beta$

Outline	Introduction	Finding the structures ●○○○	Algebra description	Summary
Greither & Pa	reigis			
Greithe	er & Pareigis			

Theorem (Greither & Pareigis, 1987)

There is a bijection between regular subgroups N of Perm(G) normalised by $\lambda(G)$ and Hopf-Galois structures on L/\mathbb{Q} defined by $N \leftrightarrow L[N]^G$.

- G acts on N via conjugation by $\lambda(G)$.
- A subgroup N of Perm(G) is said to be regular if |N| = |G| and stab_N(g) is trivial for all g ∈ G.
- Perm(G) is large so getting at possible N is difficult.

Outline	Introduction	Finding the structures ○●○○	Algebra description	Summary
Byott's transla	tion			
Bvott's	s translation	theorem		

Theorem (Byott, 1996)

Let N be a group of order |G|. There is a bijection between

 $\mathcal{N} = \{ \alpha : N \rightarrow \mathsf{Perm}(G) \text{ a } 1\text{-}1 \text{ homomorphism s.t. } \alpha(N) \text{ is regular} \}$ and

 $\mathcal{G} = \{\beta : G \rightarrow \operatorname{Perm}(N) \text{ a 1-1 homomorphism s.t. } \beta(G) \text{ is regular}\}.$

Under this bijection if $\alpha, \alpha' \in \mathcal{N}$ correspond to $\beta, \beta' \in \mathcal{G}$ respectively, then:

- α(N) = α'(N) iff β(G) is conjugate to β'(G) by an element of Aut(N),
- $\alpha(N)$ is normalised by $\lambda(G) \subset \text{Perm}(G)$ iff $\beta(G) \subseteq \text{Hol}(N) \cong N \rtimes \text{Aut}(N)$.

Outline	Introduction	Finding the structures ○○●○	Algebra description	Summary
Byott's transla	tion			
Elemer	ntary abelian	example		

- We can view C_2^3 as \mathbb{F}_2^3 so that $\operatorname{Aut}(N) \cong GL_3(\mathbb{F}_2)$.
- We find, using Sylow subgroup theory, 14 regular subgroups of Hol(N) isomorphic to $G \cong Q_8$, represented by M.
- We then have $|\operatorname{Aut}(Q_8)|/|\operatorname{Aut}(N)| \cdot 14 = 14/7 = 2$ regular subgroups of Perm(G).
- This comes from two collections, each of 7 of the subgroups, that are conjugate to each other.
- We construct $\alpha = C((\beta(G) \cdot 1_N)^{-1}) \cdot \lambda_N$ where $\beta : G \to M$ once for each collection representative.
- Write down the $N_k = \alpha_{M_k}(N)$ and apply Greither-Pareigis for the Hopf-Galois structures $L[N_k]^G$.

Outline	Introduction	Finding the structures ○○○●	Algebra description	Summary
Summary				
Final cou	int			

Abelian types

$C_2 imes C_2 imes C_2$ type	C ₈ type	$C_4 imes C_2$ type
• 14 $M \subset \operatorname{Hol}(N)$,	• 1 $M \subset \operatorname{Hol}(N)$,	• 2 $M \subset \operatorname{Hol}(N)$,
• 2 $N_k \subset \operatorname{Perm}(G)$.	• 6 $N_k \subset \operatorname{Perm}(G)$.	• 6 $N_k \subset \operatorname{Perm}(G)$.

Non-abelian types

Q_8 type	D ₄ type
 2 M ⊂ Hol(N), 2 N_k ⊂ Perm(G) (classical and standard non-classical) 	 2 <i>M</i> ⊂ Hol(<i>N</i>), 6 <i>N_k</i> ⊂ Perm(<i>G</i>) (3 from each).

Outline	Introduction	Finding the structures	Algebra description ●0000	Summary
Abelian types				
Boltie &	& Blev			

Theorem (Boltje & Bley, 1999)

For N abelian

- let $\chi_1, ..., \chi_s \in \widehat{N}$ be a set of representatives of the G-orbits for \widehat{N} .
- Let $\widehat{L_k}$ denote the fixed field of $S_k = \operatorname{stab}(\chi_k)$.

Then

- $L[N]^G \cong \prod_{k=1}^s \widehat{L_k}$,
- the maximal order of $L[N]^G$ is $\mathcal{M} \cong \prod_{k=1}^s \mathcal{O}_{\widehat{l_k}}$.

- Find G-orbits of \widehat{N} , choose representatives, and write down stabilisers in each case.
- In both of these cases the orbit structure is the same, as are the stabilisers: 4 trivial orbits with stabiliser G and one of size 4 with stabiliser (σ²).
- So we find

 $L[N_i]^G \cong \mathbb{Q}^4 \times K.$

Outline	Introduction	Finding the structures	Algebra description ○○●○○	Summary
Non-abelian types				

Quaternionic example

Class	{1}	$\{\sigma^2\}$	$\{\sigma, \sigma^3\}$	$\{\tau, \sigma^2 \tau\}$	$\{\sigma\tau,\sigma^3\tau\}$
χ0	1	1	1	1	1
χ1	1	1	1	-1	-1
χ2	1	1	-1	1	-1
χз	1	1	-1	-1	1
χ4	2	-2	0	0	0

We have that;

- the four 1-dimensional characters are realisable over $\mathbb R$ so have values in $\mathbb Q;$
- no orbits mix elements of different conjugacy classes.

Thus the *G* action on the idempotents of the four 1-dimensional characters is trivial and they are, of course, orthogonal to the other idempotents. So we get a copy of \mathbb{Q} for each of these.

Outline	Introduction	Finding the structures	Algebra description	Summary		
Non-abelian types	5					
Quaternionic example continued						

- χ_4 is realisable over $\mathbb{Q}(i)$ so let F = L(i) so that $F[N] \cong F^4 \times \operatorname{Mat}_{2 \times 2}(F)$.
- Let Γ be the Galois group of F/L. Then $F[N]^{\Gamma} = L[N]$.

Notice the 4 F slices will fix to the ${\mathbb Q}$ slices from before. For the dimension 4 slice

- let $e = \frac{1}{4}(1 \sigma^2)$, the idempotent corresponding to χ_4 .
- Then $\{e, e\sigma, e\tau, e\sigma\tau\}$ is a \mathbb{Q} -basis for the dimension 4 slice.

• The multiplication table for these is that of the quaternions \mathbb{H} . The action of G is trivial for $N = \rho(G)$. For $N = \lambda(G)$ the action gives us that an element of the dimension 4 slice is fixed by G if and only if it has the form

$$a_0e + a_1\alpha e\sigma + a_2\beta e\tau + a_3\alpha\beta e\sigma\tau.$$

Thus

$$L[\rho(G)]^G \cong \mathbb{Q}^4 \times \mathbb{H}$$
 & $L[\lambda(G)]^G \cong \mathbb{Q}^4 \times \mathbb{Q}(\alpha i, \beta j).$

Outline	Introduction	Finding the structures	Algebra description ○○○○●	Summary
C				
Summary				
Decerie	tione			
Describ				
Descrip				

For $\mu \in \{\alpha, \beta, \alpha\beta\}$ determined by the stabiliser in each case we have

$C_2 \times C_2 \times C_2$ type C_2	$_{1} imes C_{2}$ type	C ₈ type
$L[N]^G \cong \mathbb{Q}^4 \times K \qquad \qquad L[$	$N]^G \cong \mathbb{Q}^4 \times \mathbb{Q}(\mu i)^2$	$ \mathcal{L}[N]^G \cong \mathbb{Q}^2 \times \mathbb{Q}(\mu i) \times \mathbb{Q}(\sqrt{2}, \mu i) $
Q ₈ type	D_4 type	
$L[\rho(G)]^G \cong \mathbb{Q}^4 \times \mathbb{H}$ $L[\lambda(G)]^G \cong \mathbb{Q}^4 \times \mathbb{Q}(\alpha i, \beta)$	$L[N]^G \cong \mathbb{Q}^4 \times \mathbb{Q}^4$ $L[N]^G \cong \mathbb{Q}^4 \times \mathbb{Q}^4$	$\mathbb{Q}(\alpha i, \beta j)$ in three cases $\mathbb{Q}(i, \mu j)$ in the other cases

Outline	Introduction	Finding the structures	Algebra description	Summary
Observ	vations			

- All of the cases in each type come from the same subgroup of the respective automorph.
- The *D*₄ type has two different algebra descriptions corresponding to how they arose from the holomorph.
- Three of the Hopf-Galois structures of type D_4 are isomorphic as algebras to the structure $L[\lambda(G)]^G$.
- The classical Hopf-Galois structure and the standard non-classical structure are not isomorphic as algebras.

Outline	Introduction	Finding the structures	Algebra description	Summary
Thank	you			

Thank you for listening!