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Introduction

Why study (tame) quaternionic extensions?

@ Quaternionic extensions of number fields have been important
in the history of Galois module structure.

@ There exist tamely ramified quaternionic extensions L/Q
which have local, but not global, normal integral bases.

@ We might look to these for examples of cases where a
non-classical Hopf-Galois structure provides a better
description of the algebraic integers.

@ Tameness is not used in the work displayed here, but will be
useful for eventual deductions on freeness.
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Introduction

Our extension

@ Let L/Q be a Galois extension with Galois group, G, equal to
the quaternion group of order 8.

@ Then there exists a unique biquadratic subextension, K/Q,
that is Galois with group G =2 G, x G,.

o Let G=(o,7|0*=1,02=12 07 =707 }).
o Let K = Q(«, ) where 5(a) = —7(a) =  and

5(8) = ~7(8) = ~5
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Finding the structures
.

Greither & Pareigis

Greither & Pareigis

Theorem (Greither & Pareigis, 1987)

There is a bijection between regular subgroups N of Perm(G)
normalised by \(G) and Hopf-Galois structures on L/Q defined by
N < L[N]C.

@ G acts on N via conjugation by A(G).

@ A subgroup N of Perm(G) is said to be regular if |[N| = |G|
and staby(g) is trivial for all g € G.

@ Perm(G) is large so getting at possible N is difficult.
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Finding the structures
[ el

Byott's translation

Byott's translation theorem

Theorem (Byott, 1996)
Let N be a group of order |G|. There is a bijection between

N ={a: N — Perm(G) a 1-1 homomorphism s.t. a(N) is regular}

and
G ={B: G — Perm(N) a I-1 homomorphism s.t. B(G) is regular}.

Under this bijection if o,/ € N correspond to 3,3 € G
respectively, then:
o a(N) = d/(N) iff 3(G) is conjugate to 3'(G) by an element
of Aut(N),
e a(N) is normalised by \(G) C Perm(G) iff
B(G) C Hol(N) = N x Aut(N).
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Finding the structures
oe

Byott's translation

Elementary abelian example

We can view G5 as 3 so that Aut(N) = GL3(F,).

We find, using Sylow subgroup theory, 14 regular subgroups of
Hol(N) isomorphic to G = Qg, represented by M.

We then have | Aut(Qg)|/| Aut(N)| - 14 = 14/7 = 2 regular
subgroups of Perm(G).

This comes from two collections, each of 7 of the subgroups,
that are conjugate to each other.

We construct o = C((B(G) - 1n)~ 1) - Ay where B: G — M
once for each collection representative.

Write down the Ny = ap, (N) and apply Greither-Pareigis for
the Hopf-Galois structures L[N,]°.
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Finding the structures
°

Summary

Final count

Abelian types

o 14 M C Hol(N), o 1 M C Hol(N), e 2 M C Hol(N),
@ 2 Ny C Perm(G). @ 6 Ny C Perm(G). @ 6 Ny C Perm(G).

Non-abelian types

e 2 M C Hol(N), e 2 M C Hol(N),
@ 2 Ny C Perm(G) (classical @ 6 N C Perm(G) (3 from
and standard non-classical) each).
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Algebra description
®0

Abelian types

Boltje & Bley

Theorem (Boltje & Bley, 1999)
For N abelian

@ let X1,y Xs € N be a set of representatives of the G-orbits
for N.

o Let Ly denote the fixed field of S = stab(xk)-
Then

o L[NJ® =TT, Lk,

o the maximal order of L[N]® is M = [[;_, O
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Algebra description
oe

Abelian types

Elementary abelian example

e Find G-orbits of I/\\I choose representatives, and write down
stabilisers in each case.

@ In both of these cases the orbit structure is the same, as are
the stabilisers: 4 trivial orbits with stabiliser G and one of size
4 with stabiliser (02).

@ So we find
L[N}]® = Q* x K.
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Algebra description
[ Ie]

Non-abelian types

Quaternionic example

Class | {1} | {0?} | {o, 03} | {r,0%7} | {oT, 037}
w | 1] 1 1 1 1
v 1] 1 1 K| K]
v | 1] 1 1 1 K]
v | 1] 1 1 1 1
X4 2 -2 0 0

We have that;

@ the four 1-dimensional characters are realisable over R so have
values in Q;

@ no orbits mix elements of different conjugacy classes.

Thus the G action on the idempotents of the four 1-dimensional
characters is trivial and they are, of course, orthogonal to the other
idempotents. So we get a copy of Q for each of these.
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Algebra description
oe

Non-abelian types

Quaternionic example continued

@ x4 is realisable over Q(/) so let F = L(i) so that
F[N] ~ F4 x Matzxz(F).

o Let I be the Galois group of F/L. Then F[N]" = L[N].
Notice the 4 F slices will fix to the Q slices from before.
For the dimension 4 slice

o let e = %(1 — 02), the idempotent corresponding to 3.

@ Then {e, eo, er,eor} is a Q-basis for the dimension 4 slice.

@ The multiplication table for these is that of the quaternions H.
The action of G is trivial for N = p(G). For N = A(G) the action
gives us that an element of the dimension 4 slice is fixed by G if
and only if it has the form

age + ajaeo + axPer + asafeoT.
Thus
Lp(G)]°=Q* xH & LNG)]® =Q" x Q(ai, §j).
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Summary

Descriptions

For p € {a, B,af} determined by the stabiliser in each case we
have

LNIS=Q* x K | LINJS Q% x Qui)? | LINJS =

Q% x Q(ui) x Q(v2, i)

L[p(G)]® = Q* x H

L[N]® = Q* x Q(ai, B)) in three cases
LING)]® = Q* x Q(ai,Bj) | L[N]® =2 Q* x Q(i, 1j) in the other cases
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Summary

Observations

@ All of the cases in each type come from the same subgroup of
the respective automorph.

@ The Dy type has two different algebra descriptions
corresponding to how they arose from the holomorph.

@ Three of the Hopf-Galois structures of type Dy are isomorphic
as algebras to the structure L[\(G)]C.

@ The classical Hopf-Galois structure and the standard
non-classical structure are not isomorphic as algebras.
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Summary

Thank you

Thank you for listening!
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